История создания трехцветной теории зрения

Написала Левина Дарья, последняя правка от 25.05.2014

Согласно этой теории, в глазу имеются три вида приемников лучистой энергии (колбочек), воспринимающих соответственно красную (длинноволновую), желтую (средневолновую) и голубую (коротковолновую) части видимого спектра.

Все наши ощущения есть не что иное, как результат смешения в различных пропорциях этих трех цветов.

При одинаково сильном возбуждении трех видов колбочек создается ощущение белого цвета, при равном слабом — серого, а при отсутствии раздражения — черного. При этом глаз воспринимает яркость предметов путем суммирования ощущений, получаемых тремя видами колбочек, а цветность — как отношение этих ощущений.

Трехкомпонентная теория цветового зрения в настоящее время является почти общепринятой. Предполагается, что в каждом виде колбочек содержится соответствующий цветочувствительный пигмент (йодопсин), обладающий определенной спектральной чувствительностью (характеристикой поглощения). Химический состав пигментов еще не определен.

 

Но, рассмотрим вклад ученых разных стран в эту теорию:

 

Нидерландский механик, физик, математик, астроном и изобретатель Христиан Гюйгенс активно участвовал в современных ему спорах о природе света.

В 1678 году он выпустил «Трактат о свете» — набросок волновой теории света. Другое замечательное сочинение он издал в 1690 году; там он изложил качественную теорию отражения, преломления и двойного лучепреломления в исландском шпате в том самом виде, как она излагается теперь в учебниках физики.

Сформулировал так называемый принцип Гюйгенса, позволяющий исследовать движение волнового фронта, впоследствии развитый Френелем и сыгравший важную роль в волновой теории света, и теории дифракции.

 

Трёхсоставную теорию цветового зрения впервые высказал в 1756 году Михаил Ломоносов, когда писал «о трёх материях дна ока» в своём труде «О происхождении света».

На основе многолетних исследований и многочисленных опытов Ломоносов разработал теорию света, с помощью которой объяснил физиологические механизмы цветовых явлений. По мысли Ломоносова, цвета вызываются действием трёх родов эфира и трёх видов цветоощущающей материи, составляющей дно глаза.

Теория цвета и цветового зрения, с которой Ломоносов выступил в 1756 году, выдержала проверку временем и заняла должное место в истории физической оптики.

 

Шотландский физикматематик и астроном Сэр Дэвид Брюстер внес огромный вклад в развитие оптики. Он известен по всему миру, и не только в научных кругах, как изобретатель калейдоскопа.

Оптические исследования Брюстера не имеют теоретического и математического характера; тем не менее он открыл опытным путем точный математический закон, за которым осталось его имя, относящийся к явлениям поляризации света: луч света, косвенно падающий на поверхность стеклянной пластинки, частью преломляется, частью отражается. Луч, отраженный под углом полной поляризации, составляет прямой угол с направлением, которое принимает при этом преломленный луч; это условие приводит к другому, математическому выражению закона Брюстера, а именно — тангенс угла полной поляризации равен показателю преломления.

Он показал, что неравномерное охлаждение сообщает стеклу способность обнаруживать цвета в поляризованном свете — открытие, важное для физики частичных сил; вслед за тем он обнаружил подобные же явления во многих телах животного и растительного происхождения.

В 1816 г. Брюстер объяснил причину образования цветов, играющих на поверхности перламутровых раковин. До его времени алмаз считался представителем самого сильного преломления света, а лед — самого слабого в твердых телах; его измерения расширили эти пределы, показав, что хромо-кислая соль свинца преломляет сильнее алмаза, а плавиковый пшат — слабее льда. Явления поглощения света различными телами, обнаруживающиеся тем, что в спектре (солнечного) света, через них проходящего, обнаруживается множество темных линий, также были предметом исследований Брюстера. Он показал, что многие из линий солнечного спектра происходят от поглощения некоторых частей света земной атмосферой; подробно исследовал поглощение света газом азотноватого ангидрида и показал, что это вещество в жидком виде не образует спектра поглощения. Впоследствии Б. открыл, что некоторые светлые линии спектров искусственных источников света совпадают с темными, фраунгоферовыми, линиями солнечного спектра, и выразил мнение, что и эти последние, может быть, суть линии поглощения в солнечной атмосфере. Сопоставляя высказанные им в различное время мысли об этом предмете, можно видеть, что Брюстер был на пути к великому открытию спектрального анализа; но эта честь во всяком случае принадлежит Бунзену и Кирхгофу.

Брюстер много пользовался поглощающими свет веществами для другой цели, а именно, он старался доказать, что число основных цветов в спектре не семь, как думал Ньютон, а только три: красный, синий и желтый ("New analysis of solar light, indicating three primary colours etc." ("Edinb. Transact.", том XII, 1834). Его громадная экспериментальная опытность дала ему возможность как будто довольно убедительно доказать это положение, но вскоре оно было опровергнуто, в особенности опытами Гельмгольца, неопровержимо доказавшими, что зеленый цвет есть несомненно простой, и что надо принять по меньшей мере пять основных цветов.

 

Оптические наблюдения привели английского физика, механика, врача, астрона Томаса Юнга (Thomas Young) к мысли, что господствовавшая в то время корпускулярная теория света неверна. Он высказался в пользу волновой теории. Его идеи вызвали возражения английских учёных; под их влиянием Юнг отказался от своего мнения. Однако в трактате по оптике и акустике «Опыты и проблемы по звуку и свету» (1800) учёный вновь пришёл к волновой теории света и впервые рассмотрел проблему суперпозиции волн. Дальнейшим развитием этой проблемы явилось открытие Юнгом принципа интерференции (сам термин был введён Юнгом в 1802 году).

В докладе «Теория света и цветов», прочитанном Юнгом Королевскому обществу в 1801 году (опубликован в 1802 г.), он дал объяснение колец Ньютона на основе интерференции и описал первые опыты по определению длин волн света. В 1803 году в работе «Опыты и исчисления, относящиеся к физической оптике» (опубликована в 1804 г.) он рассмотрел явления дифракции. После классических исследований О. Френеля по интерференции поляризованного света Юнг высказал гипотезу о поперечности световых колебаний. Он разработал также теорию цветного зрения, основанную на предположении о существовании в сетчатой оболочке глаза трёх родов чувствительных волокон, реагирующих на три основных цвета.

 

Шотландец по происхождению, британский физик, математик и механик Джеймс Максвелл в 1854 году предложению редактора Макмиллана начал писать книгу по оптике (она так и не была закончена). 

Однако главным научным интересом Максвелла в это время была работа по теории цветов. Она берёт начало в творчестве Исаака Ньютона, который придерживался идеи о семи основных цветах. Максвелл выступил как продолжатель теории Томаса Юнга, выдвинувшего идею трёх основных цветов и связавшего их с физиологическими процессами в организме человека. Важную информацию содержали свидетельства больных цветовой слепотой, или дальтонизмом. В экспериментах по смешиванию цветов, во многом независимо повторявших опыты Германа Гельмгольца, Максвелл применил «цветовой волчок», диск которого был разделён на окрашенные в разные цвета секторы, а также «цветовой ящик», разработанную им самим оптическую систему, позволявшую смешивать эталонные цвета. Подобные устройства использовались и раньше, однако лишь Максвелл начал получать с их помощью количественные результаты и довольно точно предсказывать возникающие в результате смешения цвета. Так, он продемонстрировал, что смешение синего и жёлтого цветов даёт не зелёный, как часто полагали, а розоватый оттенок.

Опыты Максвелла показали, что белый цвет не может быть получен смешением синего, красного и жёлтого, как полагали Дэвид Брюстер и некоторые другие учёные, а основными цветами являются красный, зелёный и синий. Для графического представления цветов Максвелл, следуя Юнгу, использовал треугольник, точки внутри которого обозначают результат смешения основных цветов, расположенных в вершинах фигуры.

Серьёзный интерес Максвелла к проблеме электричества позволил ему свормулировать волновую теорию света — одну из теорий, объясняющих природу света. Основное положение теории заключается в том, что свет имеет волновую природу, то есть ведёт себя как электромагнитная волна (от длины которой зависит цвет видимого нами света).

Теория подтверждается многими опытами (в частности, опытом Т. Юнга), и данное поведение света (в виде электромагнитной волны) наблюдается в таких физических явлениях, как дисперсия, дифракция и интерференция света. Однако многие другие физические явления, связанные со светом, одной волновой теорией объяснить нельзя.

 

Первая в мире цветная фотографияВ июне 1860 года на съезде Британской ассоциации в Оксфорде Максвелл сделал доклад о своих результатах в области теории цветов, подкрепив их экспериментальными демонстрациями с помощью цветового ящика. Позже в том же году Лондонское королевское общество наградило его медалью Румфорда за исследования по смешению цветов и оптике. 17 мая 1861 года на лекции в Королевском институте (Royal Institution) на тему «О теории трёх основных цветов» Максвелл представил ещё одно убедительное доказательство правильности своей теории — первую в мире цветную фотографию, идея которой возникла у него ещё в 1855 году. Вместе с фотографом Томасом Саттоном (англ. Thomas Sutton) было получено три негатива цветной ленты на стекле, покрытом фотографической эмульсией (коллодий). Негативы были сняты через зелёный, красный и синий фильтры (растворы солей различных металлов). Освещая затем негативы через те же фильтры, удалось получить цветное изображение. Как было показано спустя почти сто лет сотрудниками фирмы «Кодак», воссоздавшими условия опыта Максвелла, имевшиеся фотоматериалы не позволяли продемонстрировать цветную фотографию и, в частности, получить красное и зелёное изображения. По счастливому совпадению, полученное Максвеллом изображение образовалось в результате смешения совсем иных цветов — волн в синем диапазоне и ближнем ультрафиолете. Тем не менее, в опыте Максвелла содержался верный принцип получения цветной фотографии, использованный спустя многие годы, когда были открыты светочувствительные красители.

 

 

Теория Юнга-ГельмгольцаНемецкий физик, врач, физиолог и психолог Герман Гельмгольц способствует признанию теории трёхцветового зрения Томаса Юнга.

Теория цветоощущения Гельмгольца (теория цветоощущения Юнга-Гельмгольца, трёхкомпонентная теория цветоощущения) -теория цветоощущения, предполагающая существование в глазу особых элементов для восприятия красного, зелёного и синего цветов. Восприятие других цветов обусловлено взаимодействием этих элементов. 

В 1959 году теория была экспериментально подтверждена Джорджом Уолдом и Полом Брауном из Гарвардского университета и Эдвардом Мак-Николом и Уильямом Марксом из Университета Джонса Гопкинса, которые обнаружили, что в сетчатке существует три (и только три) типа колбочек, которые чувствительны к свету с длиной волны 430, 530 и 560 нм, т. е. к фиолетовому, зелёному и жёлто-зелёному цвету.

Теория Юнга—Гельмгольца объясняет восприятие цвета только на уровне колбочек сетчатки и не может объяснить все феномены цветоощущения, такие как цветовой контраст, цветовая память, цветовые последовательные образы, константность цвета и др., а также некоторые нарушения цветового зрения, например, цветовую агнозию.

 

В 1868 году Леонард Гиршман занимался вопросами цветовосприятия, наименьшего угла зрения, ксантопсии при отравлении сантонином (болезнь, при которой человек видит все в желтом свете) и  под руководством Гельмгольца защетил диссертацию  "Материалы по физиологии цветоощущения". 

 

В 1870 году немецкий физиолог Эвальд Геринг сформулировал так называемую оппонентную гипотезу цветового зрения, известную также как теория обратного процесса или Теория Геринга. Он опирался не только на существование пяти психологических ощущений, а именно ощущение красного, жёлтого, зелёного, синего и белого цветов, но также и на тот факт, что они по-видимому, действуют в противоположных парах, одновременно дополняя и исключая друг друга. Суть её заключается в том, что некоторые «разные» цвета образуют при смешении промежуточные, например зелёный и синий, жёлтый и красный. Другие пары промежуточных цветов образовать не могут, зато дают новые цвета, например красный и зелёный. Красно-зелёного цвета нет, есть жёлтый.

Вместо того, чтобы постулировать три типа реакций колбочек, как в теории Юнга-Гельмгольца, Геринг постулирует наличие трёх типов противоположных пар процессов реакции на чёрный и белый, жёлтый и синий, красный и зелёный цвета. Эти реакции происходят на пострецепторной стадии действия зрительного механизма. Теория Геринга выдвигает на первый план психологические аспекты цветового зрения. Когда три пары реакций идут в направлении диссимиляции, возникают тёплые ощущения белого, жёлтого и красного цветов; когда они протекают ассимилятивно, им сопутствуют холодные ощущения чёрного, синего и голубого цветов. Использование четырёх цветов при синтезе цвета дает больше возможностей, чем использование трёх.

Гуревич и Джеймсон развили теорию противоположных процессов Геринга при цветовом зрении до степени, когда различные явления цветового зрения могут быть количественно объяснены как для наблюдателя с нормальным цветовым зрением, так и аномальным цветовым зрением.

Теория Геринга, развитая Гуревичем и Джеймсоном, известна также как оппонентная теория. В ней сохраняется три системы рецепторов: красно-зеленые, желто-голубые и черно-белые. Предполагается, что каждая система рецепторов функционирует, как антагонистическая пара. Как и в теории Юнга – Гельмгольца, считается, что каждый из рецепторов (или пар рецепторов) чувствителен к свету волн разной длины, но максимально чувствителен к волнам определенной длины.