Особенности зрительного анализатора у детей

Ребенок с миопиейВ развитии зрительного анализатора после рождения выделяют 5 периодов:

  1. формирование области желтого пятна и центральной ямки сетчатки в течение первого полугодия жизни - из 10 слоев сетчатки остаются в основном 4 (зрительные клетки, их ядра и пограничные мембраны);
  2. увеличение функциональной мобильности зрительных путей и их формирование в течение первого полугодия жизни
  3. совершенствование зрительных клеточных элементов коры и корковых зрительных центров в течение первых 2 лет жизни;
  4. формирование и укрепление связей зрительного анализатора с другими органами в течение первых лет жизни;
  5. морфологическое и функциональное развитие черепных нервов в первые 2-4 мес жизни.

Становление зрительных функций ребенка происходит соответственно этим этапам развития.

Анатомические особенности

Кожа век у новорожденных очень нежная, тонкая, гладкая, без складок, через неё просвечивает сосудистая сеть. Глазная щель узкая и соответствует размеру зрачка. Ребенок мигает в 7 раз реже по сравнению с взрослыми (2- 3 мигания в минуту). Во время сна часто нет полного смыкания век и видна голубоватая полоска склеры. К 3 мес после рождения увеличивается подвижность век, ребенок мигает 3-4 раза в минуту, к 6 мес - 4-5, а к 1 году - 5- 6 раз в минуту. К 2 годам глазная щель увеличивается, приобретает овальную форму в результате окончательного формирования мышц век и увеличения глазного яблока. Ребенок мигает 7-8 раз в минуту. К 7-10 годам веки и глазная щель соответствуют показателям взрослых, ребенок мигает 8-12 раз в минуту.

Слезная железа начинает функционировать лишь через 4-6 нед и более после рождения, дети в это время плачут без слез. Однако слезные добавочные железки в веках сразу продуцируют слезу, что хорошо определяется по выраженному слезному ручейку вдоль края нижнего века. Отсутствие слезного ручейка расценивается как отклонение от нормы и может быть причиной развития дакриоциститов. К 2-3-месячному возрасту начинается нормальное функционирование слезной железы и слезоотделение. При рождении ребенка слезоотводящие пути в большинстве случаев уже сформированы и проходимы. Однако примерно у 5% детей нижнее отверстие слезно-носового канала открывается позже или вообще не открывается, что может служить причиной развития дакриоцистита новорожденного.

Глазница (орбита) у детей до 1 года относительно мала, поэтому создается впечатление больших глаз. По форме глазница новорожденных напоминает трехгранную пирамиду, основания пирамид имеют конвергентное направление. Костные стенки, особенно медиальная, очень тонкие и способствуют развитию коллатеральных отеков клетчатки глазницы (целлюлиты). Горизонтальный размер глазниц новорожденного больше вертикального, глубина и конвергенция осей глазниц меньше, что создает порой впечатление сходящегося косоглазия. Размеры глазниц составляют около 2/3 соответствующих размеров глазниц взрослого человека. Глазницы новорожденного площе и мельче, поэтому хуже защищают глазные яблоки от травм и создают впечатление высто- яния глазных яблок. Глазные щели у детей шире из-за недостаточного развития височных крыльев клиновидных костей. Зачатки зубов расположены ближе к содержимому глазницы, что облегчает попадание в нее одонтогенной инфекции. Формирование глазницы заканчивается к 7-летнему возрасту, к 8- 10 годам анатомия глазницы приближается к таковой взрослых людей.

Конъюнктива новорожденного тонкая, нежная, недостаточно влажная, со сниженной чувствительностью, может легко травмироваться. К 3-месячному возрасту она становится более влажной, блестящей, чувствительной. Выраженная влажность и рисунок конъюнктивы могут быть признаком воспалительных заболеваний (конъюнктивит, дакриоцистит, кератит, увеит) или врожденной глаукомы.

Роговица новорожденных прозрачная, но в ряде случаев в первые дни после рождения она бывает несколько тусклой и как бы опалесцирует. В течение 1 нед эти изменения бесследно исчезают, роговица становится прозрачной. Следует отличать эту опалесценцию от отека роговицы при врожденной глаукоме, которая снимается инсталляцией гипертонического раствора (5%) глюкозы. Физиологическая опалесценция не исчезает при закапывании этих растворов. Очень важно проводить замеры диаметра роговицы, так как его увеличение является одним из признаков глаукомы у детей. Диаметр роговицы новорожденного равен 9-9,5 мм, к 1 году увеличивается на 1 мм, к 2-3 годам - еще на 1 мм, к 5 годам он достигает диаметра роговицы взрослого человека - 11,5 мм. У детей до 3-месячного возраста чувствительность роговицы резко снижена. Ослабление корнеального рефлекса приводит к тому, что ребенок не реагирует на попадание инородных тел в глаз. Частые осмотры глаз у детей этого возраста имеют важное значение для профилактики кератитов.  

Склера новорожденного тонкая, с голубоватым оттенком, который постепенно исчезает к 3-летнему возрасту. Следует внимательно относиться к данному признаку, так как голубые склеры могут быть признаком заболеваний и растяжения склеры при повышении внутриглазного давленш при врожденной глаукоме.

Передняя камера у новорожденных мелкая (1,5 мм), угол передней камерк очень острый, корень радужки имеет аспидный цвет. Полагают, что такой цвет обусловлен остатками эмбриональной ткани, которая полностью рассасывается к 6-12 мес. Угол передней камеры постепенно раскрывается и к 7 годам становится таким же, как у взрослых людей.

Радужка у новорожденных голубовато-серого цвета из-за малого количества пигмента, к 1 году начинает приобретать индивидуальную окраску. Цвет радужки окончательно устанавливается к 10-12-летнему возрасту. Прямая и содружественная реакции зрачка у новорожденных выражены не очень отчетливо, зрачки плохо расширяются медикаментами. К 1 году реакция зрачка становится такой же, как у взрослых.

Цилиарное тело в первые 6 мес находится в спастическом состоянии, что обусловливает миопическую клиническую рефракцию без циклоплегии и резкое изменение рефракции в сторону гиперметропической после инсталляций 1% раствора гоматропина.

Глазное дно у новорожденных бледно-розового цвета, с более или менее выраженной паркетностью и множеством световых бликов. Оно менее пигментировано, чем у взрослого, сосудистая сеть просматривается четко, пигментация сетчатки часто мелкоточечная или пятнистая. По периферии сетчатка сероватого цвета, периферическая сосудистая сеть незрелая. У новорожденных диск зрительного нерва бледноват, с синевато-серым оттенком, что можно ошибочно принять за его атрофию. Рефлексы вокруг желтого пятна отсутствуют и появляются в течение 1-го года жизни. В течение первых 4-6 мес жизни глазное дно приобретает вид, почти идентичный глазному дну взрослого человека, к 3 годам отмечается покраснение тона глазного дна. В диске зрительного нерва сосудистая воронка не определяется, она начинает формироваться к 1 году и завершается к 7-летнему возрасту.

Функциональные особенности

Особенностью деятельности нервной системы ребенка после рождения является преобладание подкорковых образований. Головной мозг новорожденного еще недостаточно развит, дифференцировка коры и пирамидных путей не закончена. Вследствие этого у новорожденных отмечается склонность к диффузным реакциям, к их генерализации и иррадиации и вызываются такие рефлексы, которые у взрослых бывают только при патологии.

Указанная способность центральной нервной системы новорожденного оказывает существенное влияние и на деятельность-сенсорных систем, в частности зрительной. При резком и внезапном освещении глаз могут возникнуть генерализованные защитные рефлексы - вздрагивание тела и феномен Пейпера, который выражается в сужении зрачка, смыкании век и сильном откидывании головы ребенка назад. Главные рефлексы появляются и при раздражении других рецепторов, в частности тактильного. Так, при интенсивном почесывании кожи расширяются зрачки, при легком постукивании по носу - закрываются веки. Наблюдается также феномен "кукольных глаз", при котором глазные яблоки двигаются в направлении, обратном пассивному движению головы.

В условиях освещения глаз ярким светом возникают мигательный рефлекс и отведение глазных яблок кверху. Такая защитная реакция органа зрения на действие специфического раздражителя обусловлена, очевидно, тем, что зрительная система - единственная из всех сенсорных систем, на которую адекватная афферентация действует только после рождения ребенка. Требуется некоторое привыкание к свету.

Как известно, остальные афферентации - слуховые, тактильные, интероцептивные и проприоцептивные - оказывают свое влияние на соответствующие анализаторы еще в период внутриутробного развития. Однако следует подчеркнуть, что в постнатальном онтогенезе зрительная система развивается ускоренными темпами и визуальная ориентировка вскоре опережает слуховую и тактильно-проприоцептивную.

Уже при рождении ребенка отмечается ряд безусловных зрительных рефлексов - прямая и содружественная реакция зрачков на свет, кратковременный ориентировочный рефлекс поворота обоих глаз и головы к источнику света, попытка слежения за движущимся объектом. Однако расширение зрачка в темноте происходит медленнее, чем его сужение на свету. Это объясняют недоразвитием в раннем возрасте дилататора радужки или иннервирующего эту мышцу нерва.

На 2-3-й неделе в результат появления условнорефлекторных связей начинается усложнение деятельности зрительной системы, формирование и совершенствование функций предметного, цветового и пространственного зрения.

Таким образом, световая чувствительность появляется сразу после рождения. Правда, под действием света у новорожденного не возникает даже элементарный зрительный образ, и вызываются в основном неадекватные общие и местные защитные реакции. Вместе с тем с самых первых дней жизни ребенка свет оказывает стимулирующее действие на развитие зрительной системы в целом и служит основой формирования всех ее функций.

С помощью объективных методов регистрации изменений зрачка, а также других видимых реакций (например, рефлекса Пейпера) на свет разной интенсивности удалось получить некоторое представление об уровне светоощущения у детей раннего возраста. Чувствительность глаза к свету, измеренная по пупилломоториой реакции зрачка с помощью пупиллоскопа, увеличивается в первые месяцы жизни и достигает такого же уровня, как у взрослого, в школьном возрасте.

Абсолютная световая чувствительность у новорожденных резко снижена, причем в условиях темновой адаптации она в 100 раз выше, чем при адаптации к свету. К концу первого полугодия жизни ребенка световая чувствительность существенно повышается и соответствует 2/3 ее уровня у взрослого. При исследовании зрительной темновой адаптации у детей 4-14 лет установлено, что с возрастом уровень адаптационной кривой увеличивается и к 12-14 годам становится почти нормальным.

Пониженную световую чувствительность у новорожденных объясняют недостаточным развитием зрительной системы, в частности сетчатки, что косвенно подтверждают результаты электро-ретинографии. У детей младшего возраста форма электроретинограммы близка к обычной, но амплитуда ее понижена. Последняя зависит от интенсивности света, падающего на глаз: чем интенсивнее свет, тем больше амплитуда электроретиноттраммы.

J. Francois и A. de Rouk (1963) установили, что волна а в первые месяцы жизни ребенка ниже нормальной и достигает обычной величины после 2 лет.

  • Фотопическая волна b1 развивается еще медленнее и в возрасте старше 2 лет еще имеет низкое значение.
  • Скотопическая волна b2 при слабых стимулах у детей от 2 до 6 лет значительно ниже, чем у взрослых.
  • Кривые волн а и b при сдвоенных импульсах довольно значительно отличаются от кривых, наблюдаемых у взрослых.
  • Рефрактерный период в начале более короткий.

Форменное центральное зрение появляется у ребенка только на 2-З-м месяце жизни. В дальнейшем происходит его постепенное совершенствование - от способности обнаруживать предмет до способности его различать и распознавать. Возможность различать простейшие конфигурации обеспечивается соответствующим уровнем развития зрительной системы, тогда как распознавание сложных образов связано с интеллектуализацией зрительного процесса и требует обучения в психологическом смысле этого слова.

С помощью изучения реакции ребенка на предъявление предметов разной величины и формы, (способности их дифференцировки при выработке условных рефлексов, а также реакции оптокинетического нистагма удалось получить сведения о форменном зрении у детей даже раннего возраста. Так, установлено, что

  • на 2-3-м месяце замечает грудь матери,
  • на 4 -6-м месяце жизни ребенок реагирует на появление обслуживающих его лиц, 
  • на 7-10-м месяце у ребенка появляется способность распознавать геометрические формы (куб, пирамида, конус, шар), а
  • на 2-3-м году жизни нарисованные изображения предметов.

Совершенное восприятие формы предметов и нормальная острота зрения развиваются у детей только в период школьного обучения. 

Параллельно развитию форменного зрения идет становление цветоощущения, которое также в основном является функцией колбочкового аппарата сетчатки. С помощью условнорефлекторной методики установлено, что способность дифференцировать цвет впервые появляется у ребенка в возрасте 2-6 мес. Отмечают, что различение цветов начинается прежде всего с восприятия красного цвета, возможность же распознавать цвета коротковолновой части спектра (зеленый, синий) появляется позже. Это связано, очевидно, с более ранним формированием приемников красного цвета по сравнению с приемниками других цветов.

К 4-5 годам цветовое зрение у детей уже хорошо развито, но продолжает совершенствоваться и в дальнейшем. Аномалии цветоощущения у них встречаются приблизительно с такой же частотой и в таких же количественных соотношениях между лицами мужского и женского пола, как и у взрослых.

Границы ноля зрения у детей дошкольного возраста примерно на 10% уже, чем у взрослых. В школьном возрасте они достигают нормальных величин. Размеры слепого пятна по вертикали и горизонтали, определенные при кампиметрическом исследовании с расстояния 1 м, у детей в среднем на 2-3 см больше, чем у взрослых.

Для возникновения бинокулярного зрения необходима функциональная взаимосвязь между обеими половинами зрительного анализатора, а также между оптическим и двигательным аппаратами глаз. Бинокулярное зрение развивается позднее других зрительных функций.

Вряд ли можно говорить о наличии истинного бинокулярного зрения, т. е. о способности сливать два монокулярных изображения в единый зрительный образ, у детей грудного возраста. У них появляется только механизм бинокулярной фиксации объекта как основа развития бинокулярного зрения.

Для того чтобы объективно судить о динамике развития бинокулярного зрения у детей, можно использовать пробу с призмой. Возникающее при этой пробе установочное движение свидетельствует о том, что имеется один из основных компонентов объединенной деятельности обоих глаз - фузионный рефлекс. Л. П. Хухрина (1970), использовав эту методику, установила, что способностью перемещать сдвинутое в одном из глаз изображение на центральную ямку сетчатки обладает 30% детей первого года жизни. Частота феномена с возрастом увеличивается и на 4-м году жизни достигает 94,1%. При исследовании с помощью цветового прибора бинокулярное зрение на З-м и 4-м году жизни было выявлено соответственно у 56,6 и 86,6% детей.

Главная особенность бинокулярного зрения состоит, как известно, в более точной оценке третьего пространственного измерения - глубины пространства. Средняя величина порога бинокулярного глубинного зрения у детей 4-10 лет постепенно уменьшается. Следовательно, по мере роста и развития детей оценка пространственного измерения становится все более точной.

Можно выделить следующие основные этапы развития пространственного зрения у детей. При рождении ребенок сознательного зрения не имеет. Под влиянием яркого света у него суживается зрачок, закрываются веки, голова толчкообразно откидывается назад, но глаза при этом бесцельно блуждают независимо друг от друга.

Через 2-5 нед после рождения сильное освещение уже побуждает ребенка удерживать глаза относительно неподвижно и пристально смотреть на световую поверхность. Действие света особенно заметно, если: он попадает на центр сетчатки, который к этому времени развивается в высокоценный участок, позволяющий получать наиболее детальные и яркие впечатления. К концу первого месяца жизни оптическое раздражение периферии сетчатки вызывает рефлекторное движение глаза, в результате которого световой объект воспринимается центром сетчатки.

Эта центральная фиксация вначале совершается мимолетно и только на одной стороне, но постепенно в связи с повторением она становится устойчивой я двусторонней. Бесцельное блуждание каждого глаза сменяется согласованным движением обоих глаз. Возникают конвергентные и привязанные к ним фузионные движения, формируется физиологическая основа бинокулярного зрения - оптомоторный механизм бификсации. В этот период средняя острота зрения у ребенка (измеренная по оптокинетическому нистагму) составляет примерно 0,1, к 2 годам она повышается до 0,2-0,3 и только к 6-7 годам достигает 0,8- 1,0.

Таким образом, (бинокулярная зрительная система формируется, несмотря на еще явную неполноценность монокулярных зрительных систем, и опережает их развитие. Это происходит, очевидно, для того, чтобы в первую очередь обеспечить пространственное восприятие, которое в наибольшей мере способствует совершенному приспособлению организма к условиям внешней среды. К тому времени, когда высокое фовеальное зрение предъявляет все более строгие требования к аппарату бинокулярного зрения, он уже бывает достаточно развит.

В течение 2-го месяца жизни ребенок начинает осваивать ближнее пространство. В этом принимают участие зрительные, проприоцептивные и тактильные раздражения, которые взаимно контролируют и дополняют друг друга. В первое время близкие предметы видны в двух измерениях (высота и ширина), но благодаря осязанию ощутимы в трех измерениях (высота, ширина и глубина). Так вкладываются первые представления о телесности (объемности) предметов.

На 4-м месяце у детей развивается хватательный рефлекс. При этом направление предметов большинство детей определяют правильно, но расстояние оценивается неверно. Ребенок ошибается также в определений объемности предметов, которое также основывается на оценке расстояния: он пытается схватить бестелесные солнечные пятна на одеяле и движущиеся тени.

Со второго полугодия жизни начинается освоение дальнего пространства. Осязание при этом заменяют ползание и ходьба. Они позволяют сопоставлять расстояние, на которое перемещается тело, с изменениями величины изображений на сетчатке и тонуса глазодвигательных мышц: издаются зрительные представления о расстоянии. Следовательно, эта функция развивается позднее других. Она обеспечивает трехмерное восприятие пространства и совместима лишь с полной согласованностью движений глазных яблок и симметрией в их положении.

Следует иметь в виду, что механизм ориентации в пространстве выходит за рамки зрительной системы и является продуктом сложной синтетической деятельности мозга. В связи с этим дальнейшее совершенствование этого механизма тесно связано с познавательной деятельностью ребенка. Всякое существенное изменение в окружающей обстановке, воспринимаемое зрительной системой, служит основой для построения сенсомоторных действий, для приобретения знаний о зависимости между действием и его результатом. В способности запоминать последствия своих действий, собственно, и заключается процесс обучения в психологическом смысле этого слова.

Значительные качественные изменения в пространственном восприятии происходят в возрасте 2-7 лет, когда ребенок овладевает речью и у него развивается абстрактное мышление. Зрительная оценка пространства совершенствуется и в более старшем возрасте.

В заключение следует отметить, что в развитии зрительных ощущений принимают участие как врожденные механизмы, выработанные и закрепившиеся в филогенезе, так и механизмы, приобретенные в процессе накопления жизненного опыта. В связи с этим давний спор между сторонниками нативизма и эмпиризма о главенствующей роли одного из этих механизмов в формировании пространственного восприятия представляется беспредметным.

Особенности оптической системы и рефракции 

Глаз новорожденного имеет значителыно более короткую, чем глаз взрослого, переднезаднюю ось (примерно 17-18 мм) и более высокую (80,0-90,9 дптр) преломляющую силу. Особенно значительны различия в преломляющей силе хрусталика: 43,0 дптр у детей и 20,0 дптр у взрослых. Преломляющая сила роговицы глаза новорожденного равна в среднем 48,0 дптр, взрослого - 42,5 дптр.

Глаз новорожденного, как правило, имеет гиперметропичеокую рефракцию. Степень ее составляет в среднем 2,0-4,0 дптр. В первые 3 года жизни ребенка происходит интенсивный рост глаза, a также уплощение роговицы и особенно хрусталика. К З-м годам длина переднезадней оси глаза достигает 23 мм, т. е. составляет примерно 95% от размера глаза взрослого. Pост глазного яблока продолжается до 14-15 лет. К этому возрасту длина оси глаза достигает в среднем 24 мм, преломляющая сила роговицы 43,0 дптр, хрусталика - 20,0 дптр.

По мере роста глаза вариабельность его клинической рефракции уменьшается. Рефракция глаза медленно усиливается, т. е. смещается в сторону эмметропической.   

Есть веские основания считать, что рост глаза и его частей в этот период - саморегулируемый процесс, подчиняющийся определенной цели - формированию слабой гиперметропической или эмметропической рефракции. Об этом свидетельствует наличие высокой обратной корреляции (от -0,56 до -0,80) между длиной переднезадней оси глаза и его преломляющей силой.

Статическая рефракция продолжает медленно изменяться в течение жизни. В общей тенденции к изменению средней величины рефракции (начиная с рождения и кончая возрастом 70 лет)  можно выделить две фазы гиперметропизации глаза ослабление (рефракции) - в раннем детском возрасте и в период от 30 до 60 лет и две стадии миопизации глаза (усиление рефракции) в возрасте от 10 до 30 лет и после 60 лет. Следует иметь в виду, что мнение об ослаблении рефракции в раннем детском возрасте и усилении ее после 60 лет разделяют не все исследователи.

С увеличением возраста изменяется также динамическая рефракция глаза. Особого внимания заслуживают три возрастных периода.

  • Первый - от рождения до 5 лет - характеризуется прежде всего неустойчивостью показателей динамической рефракции глаза. В этот период ответ аккомодации на запросы зрения и склонность ресничной мышцы к спазму не вполне адекватны. Рефракция в зоне дальнейшего зрения лабильна и легко сдвигается к сторону близорукости. Врожденные патологические состояния (врожденная близорукость, нистагм и др.), при которых снижается деятельность динамической рефракции глаза, могут задерживать ее нормальное развитие. Тонус аккомодации обычно достигает 5,0- 6,0 дптр и более в основном за счет гиперметропической рефракции, характерной для данного возрастного периода. При нарушении бинокулярного зрения и бинокулярного взаимодействия систем динамической рефракции может развиться патология глаза различных видов, прежде всего косоглазие. Ресничная мышца недостаточно работоспособна и еще не готова к активной зрительной работе на близком расстоянии.
  • Два других периода это, по-видимому, критические возрастные периоды повышенной уязвимости динамической рефракции: возраст 8-14 лет, в котором происходит особенно активное формирование системы динамической рефракции глаза, и возраст 40-50 лет и более, когда эта система подвергается инволюции. В возрастной период 8-14 лет статическая рефракция приближается к эмметропии, в результате чего создаются оптимальные условия для деятельности динамической рефракции глаза. Вместе с тем это период, окопда общие нарушения организма и адинамия могут оказывать неблагоприятное действие на ресничную мышцу, способствуя ее ослаблению, и значительно возрастает зрительная нагрузка. Следствием этого является склонность к спастическому состоянию ресничной мышцы и возникновению миопии. Усиленный рост организма в этот препубертатный период способствует прогрессированию близорукости.

Из особенностей динамической рефракции глаза у лиц 40- 50 лет и старше следует выделить изменения, представляющие собой закономерные проявления возрастной инволюции глаза, и изменения, связанные с патологией органа .зрения и общими болезнями пожилого и старческого возраста. К типичным проявленияму физиологического старения глаза можно отнести пресбиопсию, бусловлениую главным образом снижением эластичности хрусталика, уменьшение объема аккомодации, медленное ослабление рефракции снижение степени близорукости, переход эдиометропической рефракции в дальнозоркость, повышение степени дальнозоркости, увеличение относительной частоты астигматизма обратного типа, более быструю утомляемость глаз вследствие снижения адаптационной способности. Из состояний, связанных с возрастной патологией глаза, на первый план выступают изменения рефракции при начинающемся помутнении хрусталика. Из общих болезней, оказывающих наибольшее влияние на динамическую рефраищию, следует выделить сахарный диабет, при котором оптические установки глаза характеризуются большой лабильностью.