Голография

Написала Левина Дарья, последняя правка от 01.03.2015

Голография - набор технологий для точной записи, воспроизведения и переформирования волновых полей оптического электромагнитного излучения, особый фотографический метод, при котором с помощью лазера регистрируются, а затем восстанавливаются изображения трехмерных объектов, в высшей степени похожие на реальные.

Данный метод был предложен в 1947 году Дэннисом Габором, он же ввёл термин голограмма и получил "за изобретение и развитие голографического принципа" Нобелевскую премию по физике в 1971 году.

История голографии 

Схема ГабораПервая голограмма была получена в 1947 году (задолго до изобретения лазеров) Деннисом Габором в ходе экспериментов по повышению разрешающей способности электронного микроскопа. Он же придумал само слово "голография", которым он подчеркнул полную запись оптических свойств объекта. К сожалению, его голограммы отличались низким качеством. Получить качественную голограмму без когерентного источника света невозможно.

Особенности схемы:

  • впервые реализована идея "восстановления волн"
  • низкая пространственная частота регистрируемой интерференционной картины
  • Практическая реализация схемы Габора для получения голограмм непрозрачных рассеивающих объектовпри освещении голограммы наблюдаются два изображения, накладываемые друг на друга
  • возможна регистрация только прозрачных объектов
  • использование монохромных источников излучения при считывании

После создания в 1960 году красных рубинового (длина волны 694 нм, работает в импульсном режиме) и гелий-неонового (длина волны 633 нм, работает непрерывно) лазеров, голография начала интенсивно развиваться.

В 1962 году была создана классическая схема записи голограмм Эмметта Лейта и Юриса Упатниекса из Мичиганского Технологического Института (голограммы Лейта-Упатниекса), в которой записываются пропускающие голограммы (при восстановлении голограммы свет пропускают через фотопластинку, хотя на практике некоторая часть света от неё отражается и также создаёт изображение, видимое с противоположной стороны).

Схема Лейта-Упатниекса

В этой схеме записи луч лазера делится специальным устройством, делителем (в простейшем случае в роли делителя может выступать любой кусок стекла), на два. После этого лучи с помощью линз расширяются и с помощью зеркал направляются на объект и регистрирующую среду (например, фотопластинку). Обе волны (объектная и опорная) падают на пластинку с одной стороны. При такой схеме записи формируется пропускающая голограмма, требующая для своего восстановления источника света с той же длиной волны, на которой производилась запись, в идеале - лазера.

В 1967 году рубиновым лазером был записан первый голографический портрет.

Схема ДенисюкаВ результате длительной работы в 1968 году Юрий Николаевич Денисюк получил высококачественные (до этого времени отсутствие необходимых фотоматериалов мешало получению высокого качества) голограммы, которые восстанавливали изображение, отражая белый свет. Для этого им была разработана своя собственная схема записи голограмм. Эта схема называется схемой Денисюка, а полученные с её помощью голограммы называются голограммами Денисюка.

Особенности схемы:

  • наблюдение изображения в белом свете;
  • нечувствительность к вибрациям элемента "объект-РС";
  • высокая разрешающая способность регистрирующей среды. 

В 1977 году Ллойд Кросс создал так называемую мультиплексную голограмму. Она принципиально отличается от всех остальных голограмм тем, что состоит из множества (от десятков до сотен) отдельных плоских ракурсов, видимых под разными углами. Такая голограмма, естественно, не содержит полную информацию об объекте, кроме того, она, как правило, не имеет вертикального параллакса (то есть нельзя посмотреть на объект сверху и снизу), но зато размеры записываемого объекта не ограничены длиной когерентности лазера (которая редко превышает несколько метров, а чаще всего составляет всего несколько десятков сантиметров) и размерами фотопластинки.

Возможные реализации схемы ДенисюкаМало того, можно создать мультиплексную голограмму объекта, которого вовсе не существует, например, нарисовав выдуманный объект с множества различных ракурсов. Мультиплексная голография превосходит по качеству все остальные способы создания объёмных изображений на основе отдельных ракурсов (например, линзовые растры), однако она всё равно далека от традиционных методов голографии по реалистичности.

В 1986 году Абрахам Секе выдвинул идею создания источника когерентного излучения в приповерхностной области материала путем облучения его рентгеновским излучением. Поскольку пространственное разрешение в голографии зависит от размеров источника когерентного излучения и его удаленности от объекта, то оказалось возможным восстановить окружающие эмиттер атомы в реальном пространстве.

В отличие от оптической голографии, во всех предложенных на сегодняшний день схемах электронной голографии восстановление изображения объекта осуществляется с помощью численных методов на компьютере.

В 1988 году Бартон предложил такой метод для восстановления трехмерного изображения, основанный на использовании фурье-подобных интегралов, и продемонстрировал его эффективность на примере теоретически рассчитанной голограммы для кластера известной структуры. Первое восстановление трехмерного изображения атомов в реальном пространстве по экспериментальным данным проведено для поверхности Cu(001) Харпом в 1990 году.

Физические принципы

Основной закон голографии 

Если светочувствительный материал, на котором зарегистрирована картина интерференции нескольких световых волн, поместить в положение, в котором он находился в процессе записи, и осветить снова некоторыми из этих волн, то произойдет восстановление остальных. Эта особенность объясняется тем, что на голограмме записываются не только интенсивность, как на обычной фотопластинке, но и фаза исходящего от объекта света. Именно информация о фазе волны необходима для формирования при восстановлении трехмерного пространства, а не двухмерного, даваемого обычной фотографией. Таким образом, голография основана на восстановлении волнового фронта.

Голографический процесс состоит из двух этапов - записи и восстановления.

  • Волна от объекта интерферирует с "опорной" волной, и образующаяся при этом картина записывается.
  • Второй этап - формирование нового волнового фронта и получение изображения исходного объекта.

Запись информации о фазе волны, идущей от объекта, может быть осуществлена только источником света со стабильными фазовыми характеристиками. Идеальным для этой цели является лазер - когерентный источник света высокой интенсивности и высокой монохроматичности.

Принцип суперпозиции

Повседневный опыт показывает, что освещенность, создаваемая двумя или несколькими обычными некогерентными источниками света, является простой суммой освещенностей, создаваемой каждым из них в отдельности. Это явление называют принципом суперпозиции.

Еще Гюйгенс в своем "Трактате" писал: "Одно из чудеснейших свойств света состоит в том, что, когда он приходит из разных сторон, лучи его производят действие, проходя один сквозь другой без всяких помех". Причина этого в том, что каждый источник, состоящий из множества атомов и молекул, излучает одновременно огромное количество волн, не связанных по фазе. Разность фаз меняется быстро и беспорядочно, и, несмотря на то, что между некоторыми волнами возникает интерференция, интерференционные картины сменяются с такой частотой, что глаз не успевает заметить изменения освещенности. Поэтому интенсивность результирующего колебания воспринимается как сумма составляющих исходных колебаний, а излучение источника представляет собой "белый" свет, т. е. не монохроматический, а состоящий из различных длин волн. По той же причине этот свет является неполяризованным, а естественным, т. е. не имеет преимущественной плоскости колебания.

Когерентные колебания

В особых условиях принцип суперпозиции не соблюдается. Это наблюдается, когда разность фаз световых волн остается постоянной в течение достаточно длительного для наблюдения времени. Волны как бы "звучат в такт". Такие колебания называются когерентными.

Основным признаком когерентности является возможность интерференции. Это значит, что при встрече двух волн они взаимодействуют, образуя суммарно новую волну. В результате этого взаимодействия результирующая интенсивность будет отличаться от суммы интенсивностей отдельных колебаний - в зависимости от разности фаз образуется или более темное, или более светлое поле, или вместо равномерного поля чередующиеся полосы разной интенсивности интерференционные полосы.

Монохроматические волны всегда когерентны, однако светофильтры, часто называемые монохроматическими, в действительности никогда не дают строго монохроматического излучения, а только сужают спектральный диапазон и, конечно, не превращают обычного излучения в когерентное.

Получение когерентного излучения

Ранее был известен только один способ получения когерентного излучения - с помощью специального прибора - интерферометра. Излучение обычного источника света разделялось на два пучка, когерентных между собой. Эти пучки могли интерферировать. Теперь известен другой способ, использующий индуцированное излучение. На этом принципе основаны лазеры.

Дифракция в голографии

Основным физическим явлением, на котором основана голография, является дифракция - отклонение от своего первоначального направления света, проходящего вблизи краев непрозрачных тел или сквозь узкие щели. Если на экране нанесена не одна, а несколько щелей, то возникает интерференционная картина, состоящая из серии чередующихся светлых и темных полос, более ярких и узких, чем при одной щели. В середине расположена самая яркая полоса "нулевого порядка", по обе стороны от нее - полосы постепенно убывающей интенсивности первого, второго и прочих порядков. С увеличением числа щелей на экране полосы становятся все уже и ярче. Экран с большим количеством тонких параллельных щелей, количество которых часто доводят до 10 000, называется дифракционной решеткой.

Решетка, представляющая собой голограмму, характеризуется прежде всего тем, что дифракция происходит не на щели, а на кружке. Дифракционная фигура от круглого непрозрачного объекта представляет собой яркий центральный кружок, окруженный постепенно ослабевающими кольцами. Если вместо непрозрачного диска на пути волны поместить диск с окружающими его кольцами, то кружок на изображении станет ярче, а полосы бледнее. Если прозрачность от темного к светлому участку меняется не скачками, а постепенно, по синусоидальному закону, то такая решетка образует полосы только нулевого и первого порядков, а помехи в виде полос высших порядков не появляются. Это свойство очень важно при записи голограммы. Если переход от темного кольца к светлому будет осуществляться строго по синусоидальному закону, то кольца на изображении пропадут и изображение будет представлять собой маленький яркий кружок, почти точку. Таким образом, круглая синусоидальная решетка будет формировать из параллельного пучка лучей (плоской волны) такое же изображение, как собирательная линза.

Такая решетка, называемая зонной решеткой (пластинкой Сорэ, пластинкой Френеля), используется иногда вместо линзы. Например, она применяется в очках, заменяя тяжелые очковые линзы высоких рефракций. Получение зонных решеток возможно различными путями, как механическими, так и оптическими, интерференционными. Использование этих решеток, полученных интерференционным путем, и положено в основу голографии.

Запись голограммы

Чтобы записать голограмму сложного несамосветящегося объекта, его освещают излучением лазера. На ту же пластинку, на которую падает рассеянный отраженный объектом свет, направляют когерентную опорную волну. Эта волна отделяется от излучения лазера с помощью зеркал. 

Свет, отраженный каждой точкой объекта, интерферирует с опорной волной и образует голограмму этой точки. Так как любой объект представляет собой совокупность рассеивающих свет точек, то на фотопластинку накладывается множество элементарных голограмм - точек, которые в совокупности дадут сложную интерференционную картину объекта. 

Проявленную голограмму помещают в то место, где она находилась при записи, и включают лазер. Так же как при восстановлении голограммы точки, при освещении голограммы пучком света лазера, участвовавшего в записи, происходит восстановление световых волн, исходивших от объекта при записи. Там, где при записи находился объект, видно мнимое изображение. Сопряженное с ним действительное изображение формируется по другую сторону от голограммы, со стороны наблюдателя. Оно обычно незаметно, но в отличие от мнимого может быть получено на экране.

Ю. Н. Денисюк (1962) разработал метод, в котором для регистрации голограммы вместо тонкослойной эмульсии используются трехмерные среды. В такой толстой голограмме возникают стоячие волны, что существенно расширило возможности метода. Трехмерная дифракционная решетка, кроме описанных ранее свойств голограммы, обладает рядом важных особенностей. Наиболее интересна возможность восстановления изображения с помощью обычного источника сплошного спектра - лампы накаливания, солнца и других излучателей. Кроме того, в трехмерной голограмме отсутствуют волны нулевого порядка и действительное изображение, а следовательно, снижаются помехи.